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Abstract 

Solutions for transonic viscous and inviscid flows using a composite 

velocity procedure are presented. The velocity components of the 

compressible flow equations are written in terms of a multiplicative 

composite consisting of a viscous or rotational velocity and an 

inviscid, irrotational, potential-like function. This provides for an 

efflcient solution procedure that is locally representative of both 

asymptotic Inviscid and boundary layer theories. A modified 

conservative form of the axial momentum equation that is required to 

obtain rotational solutions in the inviscid region is presented and a 

combined conservation/nonwonservation form is applied for evaluation of 

the reduced Navier-Stokes(RNS), Euler and potential equations. A 

variety of results are presented and the effects of the approximations 

on entropy production, shock capturing and viscous interaction are 

discussed. 

1. Introduction 

The composite velocity formulation developed by Rubin and KhoslaCll 

is a boundary layer like relaxation procedure based on a multiplicative 

composite velocity. For the Navier-Stokes or reduced Navier-Stokes 

(RNS) equations it provides a technique that is consistent with both 
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asymptotic inviscid theory and boundary layer theory. The compos1 te 

velocity formulation is directly applicable to incompressible, subsonic, 

transonic and supersonic flows. The solution procedure is identical in 

a l i  cases. Supersonic regions are modelled with the EnquistmOsher 

appro xi mat ion . 
In this formulation a multlpllcatlve composite for the velocities is 

defined, see reference ( 1 ) .  A viscous or rotational velocity ( U )  and a 

pseudo-potential or irrotational velocity (+x, 4 F  specified. This 

allows for the application of procedures developed for the transonic 

potential equation to be adapted to a composite velocity Euler and RNS 

formulation. Finally, the composite splitting provides for greater 

flexibility, since the viscous and inviscid portions of the velocity 

-fields are easily identified. 

.nL - - - - - . - a &  1r1e W U I ~ U ~ ~  be velocity fermulat?m has p r o v i n u s l y  been used to 

determine incompressible [2l,subsonic and transonic [3y4] flows for 

boattail geometries. Both laminar and turbulent flows were considered. 

In these studies a coupled ( U - 0 )  strongly implicit procedure C51 was 

used to solve the full NavierdStokes equations. In the present study 

application of the composite velocity technique for both viscous and 

inviscid transonic flows are presented. For viscous flows a reduced 

form of the compressible Navier-Stokes equations, in which the viscous 

terms in the normal momentum equation and the streamwise diffusion terms 

in the axial momentum equation are neglected, is considered. The 

continuity and streamwise momentum equations are solved using a coupled 

line relaxation procedure allowing for interaction between the boundary 

layer and the outer inviscid flow. The Enquist-Osher flux biasing 

scheme for the transonic potential equatlon Is incorporated into the 
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solution procedure. Finally, a Cebeci’Smith two layer model C61 is used 

for turbulence closure. This model is acceptable for the attached or 

mildly separated wall layers considered herein. 

Verification of solution accuracy, in the outer inviscid region of a 

viscous Interacting flow field, has been considered by solving the 

inviscid Euler equations. The composite velocity equations are still 

specified, but with slip boundary conditions and infinite Reynolds 

number (Re). Both irrotational, isentropic (potential) solutions and 

rotational, nonisentropic (Euler) solutions may be calculated with the 

Re = - and slip boundary conditions. A conservation form of the 

compos1 te velocity equations is required for transonic Euler solutions; 

a non-conservation form generates the full potential solution. The 

conservation form for the Euler equations is shown to generate a correct 

entropy r ise  at  the sii~~ic wave, w h i l e  the i i ~ ~ - ~ t i i ~ e r ~ a t i ~ i i  f~riii dezs fist 

generate spurious entropy in non shock regions. 

2. Governing Equations 

The NavierlStokes equations for steady, compressible flow of a 

perfect gas are given in general, orthogonal, curvilinear coordinates as 

follows: 

Continuity 

(ph h U) 

€-Momentum 

+ (phlh3v),, - 0 2 3  € 

1 1 1 puvh, * -pV2h 1 = - - ’ +  
hl ’E E 

2 pullc + - pvun + - 
1 h2 h l  h2 n h1h2 

i a  -[-(h h T D 36 2 3 1 1  
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n-Momentum 

1 1 1 1 puvh + -pu2h - - p - - - puvs - i;2pvvn - - 
hl hl  h2 2E h l h 2  ln h2 Il 

Energy 

1 i a  a 1 - &$h2h3q1) + ~ ( h ~ h ~ q ~ ) ]  + 4 + V - hl puHE + g2PvHfl 
(4) 

where 4 and 'I are t h e  d i s s i p a t i o n  and viscous work terms, r e s p e c t i v e l y  

and 

1 V 
T l l  2P[Ti;uc + -h ] g[(h h u) + ( h  h v )  ] h lh2  lIl 3 D  2 3  € 3 1  n 

V +-h 

h2 v hl u 
1 - T 1 *  - v[--(-) + 4 - 1  ] 21 hl h2 F h2 h l  r) 

D = h h h  1 2 3  

I n  these e q u a t i o n s ,  5 and u are  t h e  c o o r d i n a t e  and  v e l o c i t y  measured 

a l o n g  t h e  body s u r f a c e :  n and v are t h e  c o o r d i n a t e  and v e l o c i t y  normal 

t o  t h e  body s u r f q c e ;  p i s  t h e  d e n s i t y ,  p t h e  p r e s s u r e ,  T t h e  

t e m p e r a t u r e ,  and H t he  t o t a l  en tha lpy .  The terms h l ( F , n ) ,  h2 (E ,n ) ,  and 

h a r e  t h e  metr ics  f o r  t h e  c u r v i l i n e a r  c o o r d i n a t e  s y s t e m .  Two 

a d d i t i o n a l  s ta te  e q u a t i o n s  are r e q u i r e d  to comple te  t he  govern ing  set  of 

e q u a t i o n s .  These a r e  
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and 

. 

where S is entropy. 

The composite velocity formulation procedure developed by Rubin and 

KhoslaClI is employed to represent the velocity fields. In the spirit 

of matched asymptotic expansions, the velocities are re-written as 

% 
h2 

v - - .  

The multiplicative composite that represents the axial velocity consists 

of two terms, an irrotational "pseudo" potential function and a viscous 

velocity U. Since the change in v across the boundary layer is of the 

order of the boundary layer thickness, the normal velocity is determined 

solely by the "pseudo" potential function. 

By substituting equations ( 7  a,b) into the NavieroStokes equations 

(1-31, the following system for U, 41, S for 2-D (h = l )  conformal (h2=hl) 3 

coordinates is obtained: 

Continuity 

6-Momentum 

1 PT -pu vUh, = -S - 2 G + viscous terms 
D e , h l E  h , E  
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.. 2 
n-Momentum 

TSq - G + n 

where 

U 

u *h, ] + viscous terms 8 e (U+1) 
an 2 +-(-I -- 

hl e rl 
(10) 

The new variable G, that appears in these equations is similar to the 

total (or Bernoulli-like) pressure. C is not, however, assumed to be 

constant, but Is calculated by the solution procedure. The entropy S is 

zero in the undisturbed flow. 

In the viscous region, the composite velocity formulation Is 

representative of the full or reduced form of the NavierYStokes 

equations. The continuity and E9nomentum equations determine (I and U 

and the viscous total pressure correction is determined from the q- 

momentum equation. In the limit as U*O the continuity equation reduces 

to the full potential equation and the Bernoulli relation, G=constant, 

is recovered. Thus, equations (9) and (10) are identically satisfied 

and the composite velocity system has reduced to the expected 

representation.for an inviscid, irrotational flow. 

Inviscid flows are solved by dropping the viscous terms In equations 

(9) and (10). The interpretation of the composite velocity terms for 

inviscid flows varies slightly from that for vlscous flows. The 4 term 

still represents an irrotational “pseudo” potential function. The U 

term, however, is no longer associated with the viscous effects but 

rather it reflects with the effects of rotationality associated with the 

inviscid flow; viz,the vorticity n - (h v) -(h,u), - d(U(l+#s))q. 
2 F  
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The composite velocity scheme is formulated to provide solutions to 

the full Euler equations: if the system is solved in the non4 

conservation form, however, the full potential solution is recovered 

instead; foe., U=O everywhere and neither entropy nor vorticity is 

generated at any point in the flow field. This includes leading and 

trailing edges as well as captured shock waves. In order to capture the 

rotational or (Euler) shock wave in transonic flows, the 6-momentum 

equation must be rewritten in a quasi-conservation form. This Is 

obtained by substituting for S and G in the right hand side of equation 

U 
times the continuity (91,  1.e.. subtract, from the right hand side, - e 

hl h2 

equation. This gives the following 'conservation' form for the 6' 

momentum equation: 

For subsonic flows (U=O)  and a Cartesian grid (hl=h2=l.0), equation 

( 1 1 )  reduces to the familiar conservation form of the E-momentum 

equation, i.e., 

For transonic flow the correct entropy rise at the shock wave will now 

be generated. Although the correct entropy rise is predicted at the 

shock with the system ( 1 1  1, spurious entropy is also generated in non- 

shock regions. Tho generation of numerical entropy is a common problem 

found in many Euler solvers. Large errors in entropy may be generated 

at leading and trailing edgesC71. These errors may even lead to 
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spurious unsteady or steady solutions [SI. In the present technique a 

simple solution to this problem is available. The nonconservative form 

of the axial momentum equation ( 9 )  produces no entropy, but will 

accurately convect entropy Or vorticity that is geiierated elsewhere. 

Therefore, this form of the axial momentum equation is used everywhere 

except in the shock region, where equation ( 1 1 )  is required. This leads 

to a solution procedure with the desirable feature of generating the 

correct entropy rise at the shock wave, but not creating spurious 

entropy in other regions of the flow. The advantage of nonYconservative 

equations away from shock waves and combined conservative/non- 

conservative systems has been discussed in several studies by other 

investigatorsC211. 

3. Boundary Condi tions 

As a simple test case, solutions for symmetric flow over a NACA0012 

airfoil are obtained. The boundary conditions for the composite 

velocity formulation are easily implemented. At the inflow, F-F,, 

uniform flow is assumed; thus U=O, H=He, +PO, and S=O. The upper 

boundary , n-nm,  is assumed to be sufficiently far from the airfoil so 

that the flow field is undisturbed; therefore, similar boundary 

conditions apply. Along the body, the viscous nodslip and zero 

injection conditions are used: therefore, U=-1 and +,=O. Ahead of the 

airfoil and in the wake, the symmetry conditions U -0 are imposed. 
rla6n 

At the outflow,. F=F 

assumes a weak viscous/lnviscid interaction. 

only +E-O must be prescribed. This, in effect, m '  

For inviscid flows, the no slip condition no longer applies and the 

zero vorticity condition U -0 is specified along the airfoil. At the n 



outflow, 5-5 the boundary condition 9-0 is imposed. The remaining m’ 

boundary conditions are unchanged. 

4. Finite Differencing 

The E n q ~ i s t ~ O s h e r  flux biasing scheme[9] for transonic flows has 

been adapted for differencing the continuity equation. This scheme, 

which has been developed for the full potential equation, produces very 

sharp shocks and guarantees that expansion shocks do not occur. This 

-4 scheme consists of defining a modified density p ,  such that 

where 

(pq), - 0.0 i f M S 1  
, 

* *  
(pq), - p q  - P q if M 2 1 

* * 
Here p and q are the sonic velocity and density. The modified density 

is then used in the [ p ( l  + 4 ) I  portion of the C-derivative in the E. 

continuity equation. 

The [p(U+1)(1+$1~)]~ derivative is approximated with a two point 

backward difference and the t$ derivative is approximated with a two E. 

4 

point forward difference. The modified density p is applied a3 

discussed previously, The [pt$,], is differenced in a similar manner, 

when v is less than zero. When the v velocity Is greater than zero, 

however, this term is forward differenced and 0 is approximated with a n 

two point backward difference. Central differencing results for 

subsonic regions. 
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approximated with two or three point backward differences. For vlscous 

flows, upwind differencing is applied in regions of reversed flow. The 

convective term is identically zero at the separation and reattachment 

points. The (ph2Uu,v),, and Ue (or p ) terms are approximated with 
F S  E 

second order accurate central differences. For the S and G terms on 
S E 

the right hand side, two point backward differences are applied. When 

the conservation form. equation ( I t ) ,  is used, a two point backward 

difference is used for (p+pue2) and central differencing is used for 
€ 

( PUeV) n. 

Backward differencing of the (-derivatives provides for the proper 

convection of U in inviscid regions. If a value of U (I. e. vorticity) 

Is generated, this value will be convected downstream in one global 

pass. Moreover, In the non-conservation form the value of the vorticity 

is conserved and additional numerical vorticity is not generated even at 

the trailing edge of an airfoil. 

The discretized continuity and E-momentum equations are solved for U 

and #I with a coupled line relaxation procedure. The values of p,  S, and 

G in the equations are given from the previous iteration. From the 

values of 0 and $, the entropy variation is determined from the 11- 

momentum equation. This equation is solved using the standard 

trapezoidal rule. 

For the large Reynolds number moderately separated flows considered 

herein. a Cebeci-Smith two layer eddy viscosity model is used to close 

the system of governing equations. The coefficient of viscosity is 

given as 



where pl is t h e  l a m i n a r  v i s c o s i t y  a n d  v t  is t h e  t u r b u l e n t  e d d y  

v i s c o s i t y ,  a s  p r e s c r i b e d  by t h e  Cebeci*Smith model. Details of t h i s  

c l o s u r e  model are found I n  r e f e r e n c e  3. The  o n s e t  of t u r b u l e n c e  was 

s p e c i f i e d  a t  5% of t h e  chord. The a c t u a l  t r a n s i t i o n  l o c a t i o n  is n o t  

well known, b u t  is approximated r easonab ly  wi th  t h e  p r e s e n t  assumption.  

5 .  R e s u l t s  

Viscous  and i n v i s c i d  s o l u t i o n s  f o r  t r a n s o n i c  flow have been o b t a i n e d  

f o r  t h e  symmetr ic  flow ove r  a NACA0012 a i r f o i l .  A Schwartz+Christoffel 

mapping procedure  developed by Davis [ lo ]  g e n e r a t e s  t h e  r e q u i r e d  g r i d ,  

f i g u r e  1 .  The flow r e g i o n  is d e f i n e d  from a n  u p s t r e a m  l o c a t i o n  of 

€1-4.6 to a n  ou t f low boundary 6-6.89. T h e  a i r f o i l  is located b e t w e e n  

C-0.0 a n d  C i l . 0 .  I n  t h e  t a n g e n t i a l  d i r e c t i o n ;  105 g r i d  p o i n t s  are 

p r e s c r i b e d :  t h i s  i n c l u d e s  60 p o i n t s  on t h e  body, 20 p o i n t s  ahead  of t h e  

body ,  a n d  25 p o i n t s  a f t  of t h e  body. A uniform mesh is d e f i n e d  on  t h e  

body and a mesh stretch factor of 1.18 is used ahead of a n d  a f t  of t h e  

body.  I n  t he  II d i r e c t i o n ,  there are 50 g r i d  p o i n t s ,  so t h a t  the  flow 

r e g i o n  e x t e n d s  from r1'0.0 to ~ 2 2 . 0 .  For v i s c o u s  flows, a n  i n i t i a l  g r id  

s p a c i n g  of Ar1=0.0001 is prescribed; a stretch factor of 1.25 Is assumed 

for t h e  remain ing  mesh deve lopmen t .  For i n v i s c i d  flows, t h e  i n i t i a l  

g r i d  s p a c i n g  i n  t h e  r l - d i r e c t i o n  is l\11=0.02, s i n c e  the boundary l a y e r  

need n o t  be resolved. 

To v e r i f y  t h a t  t h e  a lgor i thm c o r r e c t l y  c a l c u l a t e s  t h e  i n v i s c i d  

p o r t i o n  of the  flow, a f u l l  p o t e n t i a l  s o l u t i o n  for M-90.85 is o b t a i n e d .  

F u l l  p o t e n t i a l  s o l u t i o n s  are o b t a i n e d  d i r e c t l y  from t h e  set  of e q u a t i o n s  

(8-10) by So lv ing  t h e  a x i a l  momentum e q u a t i o n  i n  t he  n o n - c o n s e r v a t i o n  

form g i v e n  by e q u a t i o n  ( 9 ) .  I n  t h i s  form, U and S are c a l c u l a t e d  to be 
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identically zero and therefore the full potential solution is recovered 

for 0. The present solution is compared with results oP the GAMM 

workshop on transonic flows c 1 1 1 ,  figure 2. The workshop results 

indicate a wide variation in shock location and strength and the figure 

depicts only the lower and upper bounds of the workshop solutions. 

Comparison with other potential solutions, in the published literature 

and for the same case, indicate that this scatter of solutions to the 

full potential equation is not unusual, figure 3. The present 
- 

calculation produces a very sharp shock and the shock falls within the 

band of solutions presented at the GAMM workshop. 

Next, the alternate form of the axial momentum equation (12) Is 

implemented in the shock region so that Euler solutions can be obtained. 

A comparison of a Mm=0.8 solution, with results given by Clarke 

et .al. [ 191 is shown in figure 4. The solutions are seen to be In good 

agreement with the present results, which predict a slightly sharper 

shock. Figure 5 presents a comparison of the present solution with the 

GAMM workshop results for a M-10.85 case. The band of solutions for the 

Euler case is seen to be much smaller than that for the Pull potential 

equation and again only the upper and lower bounds of solutions are 

presented. The present solution falls within this band and produces a 

sharper shock than those given in the workshop results. 

In figure 6, the entropy generated along the airfoil for the 

Mm=0.85 case is compared with ths value obtained from the Rankine- 

Hugoniot shock relations. The agreement is seen to be excellent. Two 

other important features should be noted. First, entropy is not 

generated ahead of the shock region. Secondly, the entropy generated at 

12 



the shock is convected properly downstream with no additional increase 

in entropy elsewhere. 

The primary goal of this work, however, is to solve transonic. 

viscous fnteracting problems. The potential and Euler examples 

discussed herein have verif led that the proper inviscid solutions are 

accurate, and therefore, should provide accurate outer flow behavior for 

full viscous calculations. The next set of results will describe 

solutions to the RNS equations for a variety of freestream Mach numbers 

and for a Reynolds number, Re=4x106. Comparison of these solutions for 

a n  irrotational (potential) outer inviscid flow model and for a 

rotational (Euler) outer model flow is included in the discussion. 

Results for M0-0.8 are presented in figures 7a-c. In figure 7a the 

pressure coefficient is shown. Little difference is seen between the 

solutions with potential or Euler outer flows models. 

also compared with experimental data [203. 

These. results are 

The computed solgtion shows 

good agreement with the experimental results, except that the shock lies 

slightly aft of the experimental data. The skin friction coefficient 

for both outer flow conditions is compared in figure 7b. The effect of 

the outer flow is much more pronounced for the skin friction than was 

the case for the pressure coefficient. The skin friction has a much 

smaller decrease through the shock for the Euler outer flow. The 

oscillations in the skin friction coefficient at the leading edge are 

due to a lack of grid resolution and vanish at 10% of the chord. 

Finally, the Mach contours for M-10.8 are given in figure 7c. 

Results for H0-0.8j are presented in figures 8a-c. The pressure 

coefficient, figure 8a, is once again insensitive to the potential or 

Euler outer flow modeling, except in the post shock region where the 
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E u l e r  o u t e r  flow p r o v i d e s  a somewhat d i f f e r e n t  c h a r a c t e r  t h a n  t h a t  

o b t a i n e d  with the  p o t e n t i a l  o u t e r  flow. The computed results a g a i n  show 

t h e  shock  l o c a t e d  s l i g h t l y  a f t  of the  e x p e r i m e n t a l  data. Also, t h e  

expe r imen ta l  r e s u l t s  show a small  i n c r e a s e  i n  p r e s s u r e  ahead of t h e  

shock ,  which is no t  s een  i n  the computed results. Only t h e  Eu le r  o u t e r  

flow model p r o v i d e s  t h e  p r o p e r  flow character  a f t e r  t h e  shock .  The 

r e a s o n  for t he  d i f f e r e n c e  i n  s o l u t i o n s  af ter  t h e  shock can be seen  from 

t h e  s k i n  f r i c t i o n  r e s u l t s ,  f i g u r e  8b. The s o l u t i o n  w i t h  a p o t e n t i a l  

o u t e r  flow model h a s  a small s e p a r a t e d  r e g i o n  a f t e r  the shock. The 

s o l u t i o n  wi th  an Eu le r  o u t e r  flow model does n o t  separate and t h e  s k i n  

f r i c t i o n  is somewhat larger .  Mach c o n t o u r s  for t h e  M--0.83 case are 

g i v e n  i n  f i g u r e  8c. 

The importance of t h e  o u t e r  flow model becomes more appa ren t  for t h e  

-u.u5. These r e s u l t s  m e  given i n  flgures 9a-c. The  U - - L  -..-L-.. M ,n Q I'ldc: I 1  I 1  Ulll UGI 
OD 

s h o c k  o b t a i n e d  w i t h  t h e  p o t e n t i a l  o u t e r  flow model l ies ahead of t h e  

shock o b t a i n e d  w i t h  t h e  E u l e r  outer  flow model and a g a i n  p r e d i c t s  a 

d i f f e r e n t  pos t  shock behavior .  The  sk in  f r i c t i o n  c o e f f i c i e n t  f i g u r e  9b ,  

shows t h a t  the E u l e r  o u t e r  flow model leads t o  a r a p i d  r e c o v e r y  a f t e r  

t h e  shock wi th  on ly  a sma l l  s e p a r a t i o n  r e g i o n ;  the  p o t e n t i a l  o u t e r  flow 

model produces a large r e g i o n  of s e p a r a t i o n .  The r o t a t i o n a l i t y  in t h e  

outer flow appears to s u p p r e s s  t he  tendency toward s e p a r a t i o n .  The Mach 

c o n t o u r  p l o t  is g i v e n  in f i g u r e  9c.  E x p e r i m e n t a l  r e s u l t s  a r e  n o t  

available f o r  t h i s  case. 

The p o t e n t i a l ,  E u l e r ,  and RNS (Eu le r  o u t e r  model) results for M-10.8 

a n d  MOD-0.85 a r e  compared i n  f i g u r e s  10 and  1 1 ,  r e s p e c t i v e l y .  For 

Mm=0.8* t h e  three s o l u t i o n s  agree f a i r l y  wel l ,  w i t h  t h e  E u l e r  and  RNS 



solution being slightly weaker and lying forward of the potential shock. 

The rotational and viscous effects are of increased importance for the 

larger Mach number M--O.85. The Euler shock is weaker and lies forward 

of the potential shock. The RNS shock lies forward and is slightly 

weaker than the Euler shock. For the larger Mach numbers, shocks 

obtained from the full potential solution are too strong and are located 

far downstream of the RNS (Euler outer flow) results. 

6. Summary 

The composite velocity solution procedure has been applied for both 

viscous and inviscid transonic flows. Results are presented for flow 

over a NACA0012 airfoil. The results demonstrate the versatility of the 

composite velocity procedure. Both viscous and inviscid flows are 

solved from the same formulation with a simple change in the boundary 

condi t ions. 

F o r  inviscid flows, both irrotational potential solutions and 

rotational Euler solutions are obtained. For the Euler model, the axial 

momentum equation is given in a f u i i  conservatiuri i'o~iii in the shock 

regton. This provides a solution technique that produces the correct 

entropy rise at the shock and at the same time convects the entropy 

accurately; no spurious entropy is created outside of shock regions. The 

potential and Euler solutions were found to agree with earlier results 

presented for the inviscid models. 

Solutions for the RNS equations are obtained with potential and 

Euler outer models for a variety of Mach numbers. The results agree 

quite well with experimental results. The form of the outer flow model 

affects the post shock solution. Solutions with an irrotational outer 

flow tend to more readily induce post-shock separation, than do the 
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solutions with rotational outer flow modelling. The ability of the 

composite velocity procedure to efficiently calculate high Reynolds 

number transonic viscous flows attributes to the robustness of the 

solution technique. 

Finally, the results for potential, Euler, and RNS (Euler outer 

modelling) solutions for several cases are compared. For higher Mach 

numbers, the Euler and potential solutions produce stronger shocks that 

are located further aft on the airfoil and do not accurately reflect the 

shock behavior. 
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